Zeta Functions of Graphs
Author | : Audrey Terras |
Publisher | : Cambridge University Press |
Total Pages | : 253 |
Release | : 2010-11-18 |
ISBN-10 | : 9781139491785 |
ISBN-13 | : 1139491784 |
Rating | : 4/5 (784 Downloads) |
Download or read book Zeta Functions of Graphs written by Audrey Terras and published by Cambridge University Press. This book was released on 2010-11-18 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.