Small Scale Modeling and Simulation of Incompressible Turbulent Multi-Phase Flow
Author | : Stéphane Vincent |
Publisher | : Springer Nature |
Total Pages | : 314 |
Release | : 2022-10-06 |
ISBN-10 | : 9783031092657 |
ISBN-13 | : 3031092651 |
Rating | : 4/5 (651 Downloads) |
Download or read book Small Scale Modeling and Simulation of Incompressible Turbulent Multi-Phase Flow written by Stéphane Vincent and published by Springer Nature. This book was released on 2022-10-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides basic and recent research insights concerning the small scale modeling and simulation of turbulent multi-phase flows. By small scale, it has to be understood that the grid size for the simulation is smaller than most of the physical time and space scales of the problem. Small scale modeling of multi-phase flows is a very popular topic since the capabilities of massively parallel computers allows to go deeper into the comprehension and characterization of realistic flow configurations and at the same time, many environmental and industrial applications are concerned such as nuclear industry, material processing, chemical reactors, engine design, ocean dynamics, pollution and erosion in rivers or on beaches. The work proposes a complete and exhaustive presentation of models and numerical methods devoted to small scale simulation of incompressible turbulent multi-phase flows from specialists of the research community. Attention has also been paid to promote illustrations and applications, multi-phase flows and collaborations with industry. The idea is also to bring together developers and users of different numerical approaches and codes to share their experience in the development and validation of the algorithms and discuss the difficulties and limitations of the different methods and their pros and cons. The focus will be mainly on fixed-grid methods, however adaptive grids will be also partly broached, with the aim to compare and validate the different approaches and models.