Higher-Order Time Asymptotics of Fast Diffusion in Euclidean Space: A Dynamical Systems Approach
Author | : Jochen Denzler |
Publisher | : American Mathematical Soc. |
Total Pages | : 94 |
Release | : 2015-02-06 |
ISBN-10 | : 9781470414085 |
ISBN-13 | : 1470414082 |
Rating | : 4/5 (082 Downloads) |
Download or read book Higher-Order Time Asymptotics of Fast Diffusion in Euclidean Space: A Dynamical Systems Approach written by Jochen Denzler and published by American Mathematical Soc.. This book was released on 2015-02-06 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper quantifies the speed of convergence and higher-order asymptotics of fast diffusion dynamics on Rn to the Barenblatt (self similar) solution. Degeneracies in the parabolicity of this equation are cured by re-expressing the dynamics on a manifold with a cylindrical end, called the cigar. The nonlinear evolution becomes differentiable in Hölder spaces on the cigar. The linearization of the dynamics is given by the Laplace-Beltrami operator plus a transport term (which can be suppressed by introducing appropriate weights into the function space norm), plus a finite-depth potential well with a universal profile. In the limiting case of the (linear) heat equation, the depth diverges, the number of eigenstates increases without bound, and the continuous spectrum recedes to infinity. The authors provide a detailed study of the linear and nonlinear problems in Hölder spaces on the cigar, including a sharp boundedness estimate for the semigroup, and use this as a tool to obtain sharp convergence results toward the Barenblatt solution, and higher order asymptotics. In finer convergence results (after modding out symmetries of the problem), a subtle interplay between convergence rates and tail behavior is revealed. The difficulties involved in choosing the right functional spaces in which to carry out the analysis can be interpreted as genuine features of the equation rather than mere annoying technicalities.