Forward and Inverse Problems for Hyperbolic, Elliptic and Mixed Type Equations
Author | : Alexander G. Megrabov |
Publisher | : Walter de Gruyter |
Total Pages | : 244 |
Release | : 2012-05-24 |
ISBN-10 | : 9783110944983 |
ISBN-13 | : 3110944987 |
Rating | : 4/5 (987 Downloads) |
Download or read book Forward and Inverse Problems for Hyperbolic, Elliptic and Mixed Type Equations written by Alexander G. Megrabov and published by Walter de Gruyter. This book was released on 2012-05-24 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are an important and rapidly developing direction in mathematics, mathematical physics, differential equations, and various applied technologies (geophysics, optic, tomography, remote sensing, radar-location, etc.). In this monograph direct and inverse problems for partial differential equations are considered. The type of equations focused are hyperbolic, elliptic, and mixed (elliptic-hyperbolic). The direct problems arise as generalizations of problems of scattering plane elastic or acoustic waves from inhomogeneous layer (or from half-space). The inverse problems are those of determination of medium parameters by giving the forms of incident and reflected waves or the vibrations of certain points of the medium. The method of research of all inverse problems is spectral-analytical, consisting in reducing the considered inverse problems to the known inverse problems for the Sturm-Liouville equation or the string equation. Besides the book considers discrete inverse problems. In these problems an arbitrary set of point sources (emissive sources, oscillators, point masses) is determined.