Analytical and Experimental Study of Turbulent Flow Drag Reduction and Degradation with Polymer Additives

Analytical and Experimental Study of Turbulent Flow Drag Reduction and Degradation with Polymer Additives
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1318945613
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Analytical and Experimental Study of Turbulent Flow Drag Reduction and Degradation with Polymer Additives by : Xin Zhang

Download or read book Analytical and Experimental Study of Turbulent Flow Drag Reduction and Degradation with Polymer Additives written by Xin Zhang and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Flow friction reduction by polymers is widely applied in the oil and gas industry for flow enhancement or to save pumping energy. The huge benefit of this technology has attracted many researchers to investigate the phenomenon for 70 years, but its mechanism is still not clear. The objective of this thesis is to investigate flow drag reduction with polymer additives, develop predictive models for flow drag reduction and its degradation, and provide new insights into the drag reduction and degradation mechanism. The thesis starts with a semi-analytical solution for the drag reduction with polymer additives in a turbulent pipe flow. Based on the FENE-P model, the solution assumes complete laminarization and predicts the upper limitation of drag reduction in pipe flows. A new predictive model for this upper limit is developed considering viscosity ratios and the Weissenberg number - a dimensionless number related to the relaxation time of polymers. Next, a flow loop is designed and built for the experimental study of pipe flow drag reduction by polymers. Using a linear flexible polymer - polyethylene oxide (PEO) - in water, a series of turbulent flow experiments are conducted. Based on Zimm's theory and the experimental data, a correlation is developed for the drag reduction prediction from the Weissenberg number and polymer concentration in the flow. This correlation is thoroughly validated with data from the experiments and previous studies as well. To investigate the degradation of drag reduction with polymer additives, a rotational turbulent flow is first studied with a double-gap rheometer. Based on Brostow's assumption, i.e., the degradation rate of drag reduction is the same as that of the molecular weight decrease, a correlation of the degradation of drag reduction is established, along with the proposal of a new theory that the degradation is a first-order chemical reaction based on the polymer chain scission. Then, the accuracy of the Brostow's assumption is examined, and extensive experimental data indicate that it is not correct in many cases. The degradation of drag reduction with polymer additives is further analyzed from a molecular perspective. It is found that the issue with Brostow's theory is mainly because it does not consider the existence of polymer aggregates in the flow. Experimental results show that the molecular weight of the degraded polymer in the dilute solution becomes lower and the molecular weight distribution becomes narrower. An improved mechanism of drag reduction degradation considering polymer aggregate is proposed - the turbulent flow causes the chain scission of the aggregate and the degraded aggregate loses its drag-reducing ability. Finally, the mechanism of drag reduction and degradation is examined from the chemical thermodynamics and kinetics. The drag reduction phenomenon by linear flexible polymers is explained as a non-spontaneous irreversible flow-induced conformational-phase-change process that incorporates both free polymers and aggregates. The entire non-equilibrium process is due to the chain scission of polymers. This theory is shown to agree with drag reduction experimental results from a macroscopic view and polymer behaviours from microscopic views. The experimental data, predictive models, and theories developed in this thesis provide useful new insights into the design of flow drag reduction techniques and further research on this important physical phenomenon.


Analytical and Experimental Study of Turbulent Flow Drag Reduction and Degradation with Polymer Additives Related Books

Analytical and Experimental Study of Turbulent Flow Drag Reduction and Degradation with Polymer Additives
Language: en
Pages:
Authors: Xin Zhang
Categories:
Type: BOOK - Published: 2020 - Publisher:

DOWNLOAD EBOOK

Flow friction reduction by polymers is widely applied in the oil and gas industry for flow enhancement or to save pumping energy. The huge benefit of this techn
Turbulent Drag Reduction by Surfactant Additives
Language: en
Pages: 233
Authors: Feng-Chen Li
Categories: Science
Type: BOOK - Published: 2012-01-10 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-r
An Experimental Study of Turbulent Diffusion of Drag-reducing Polymer Additives
Language: en
Pages: 84
Authors: R. R. Walters
Categories: Boundary layer control
Type: BOOK - Published: 1970 - Publisher:

DOWNLOAD EBOOK

Drag Reduction of Turbulent Flows by Additives
Language: en
Pages: 243
Authors: A. Gyr
Categories: Technology & Engineering
Type: BOOK - Published: 2013-03-09 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Drag Reduction of Turbulent Flows by Additives is the first treatment of the subject in book form. The treatment is extremely broad, ranging from physicochemica
Viscous Drag Reduction
Language: en
Pages: 497
Authors: C. Sinclair Wells
Categories: Technology & Engineering
Type: BOOK - Published: 2013-12-20 - Publisher: Springer

DOWNLOAD EBOOK