Transfer Learning

Transfer Learning
Author :
Publisher : Cambridge University Press
Total Pages : 394
Release :
ISBN-10 : 9781108860086
ISBN-13 : 1108860087
Rating : 4/5 (087 Downloads)

Book Synopsis Transfer Learning by : Qiang Yang

Download or read book Transfer Learning written by Qiang Yang and published by Cambridge University Press. This book was released on 2020-02-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.


Transfer Learning Related Books

Transfer Learning
Language: en
Pages: 394
Authors: Qiang Yang
Categories: Computers
Type: BOOK - Published: 2020-02-13 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability t
Federated Learning Systems
Language: en
Pages: 207
Authors: Muhammad Habib ur Rehman
Categories: Technology & Engineering
Type: BOOK - Published: 2021-06-11 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. Th
Federated Learning
Language: en
Pages: 291
Authors: Qiang Yang
Categories: Computers
Type: BOOK - Published: 2020-11-25 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applicati
Federated and Transfer Learning
Language: en
Pages: 371
Authors: Roozbeh Razavi-Far
Categories: Technology & Engineering
Type: BOOK - Published: 2022-09-30 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book provides a collection of recent research works on learning from decentralized data, transferring information from one domain to another, and addressin
Machine Learning
Language: en
Pages: 407
Authors: Stephen Marsland
Categories: Business & Economics
Type: BOOK - Published: 2011-03-23 - Publisher: CRC Press

DOWNLOAD EBOOK

Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical