First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning
Author :
Publisher : Springer Nature
Total Pages : 591
Release :
ISBN-10 : 9783030395681
ISBN-13 : 3030395685
Rating : 4/5 (685 Downloads)

Book Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

Download or read book First-order and Stochastic Optimization Methods for Machine Learning written by Guanghui Lan and published by Springer Nature. This book was released on 2020-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.


First-order and Stochastic Optimization Methods for Machine Learning Related Books

First-order and Stochastic Optimization Methods for Machine Learning
Language: en
Pages: 591
Authors: Guanghui Lan
Categories: Mathematics
Type: BOOK - Published: 2020-05-15 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms.
Optimization Algorithms for Distributed Machine Learning
Language: en
Pages: 137
Authors: Gauri Joshi
Categories: Computers
Type: BOOK - Published: 2022-11-25 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first in
Large-Scale and Distributed Optimization
Language: en
Pages: 416
Authors: Pontus Giselsson
Categories: Mathematics
Type: BOOK - Published: 2018-11-11 - Publisher: Springer

DOWNLOAD EBOOK

This book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimizat
Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
Language: en
Pages: 138
Authors: Stephen Boyd
Categories: Computers
Type: BOOK - Published: 2011 - Publisher: Now Publishers Inc

DOWNLOAD EBOOK

Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine l
Optimization for Machine Learning
Language: en
Pages: 509
Authors: Suvrit Sra
Categories: Computers
Type: BOOK - Published: 2012 - Publisher: MIT Press

DOWNLOAD EBOOK

An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay betw