Hydration of Multi-component Cements Containing Clinker, Slag, Type-V Fly Ash and Limestone

Hydration of Multi-component Cements Containing Clinker, Slag, Type-V Fly Ash and Limestone
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:953397424
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Hydration of Multi-component Cements Containing Clinker, Slag, Type-V Fly Ash and Limestone by : Axel Schöler

Download or read book Hydration of Multi-component Cements Containing Clinker, Slag, Type-V Fly Ash and Limestone written by Axel Schöler and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Problem definition and research objectives 1. The production of Portland cement clinker causes approx. 5% to 8% of the annual man-made CO2 emissions. This is due to the usage of mainly fossil fuel (approx. 40 % of the total CO2) and because of the decarbonation of limestone as a main component of the raw meal (approx. 60 % of the total CO2). 2. Various strategies are applied in order to reduce the green-house gas-emissions, such as optimizing the process of clinker production, the use of alternative fuel and the partial substitution of the clinker in blended cement by so-called SCM (supplementary cementitious materials). Hereby blast-furnace slag, fly ash and limestone are the most used materials. 3. Quaternary systems containing three SCM simultaneously besides Portland cement contribute to the reduction of CO2 emissions due to the decrease of the clinker content. In addition, such systems allow to use blast-furnace slag and fly ash in the most economical way and provide the possibility to account for shortages of SCM on the market. 4. Blast-furnace slag and fly ash show similarities in their principal chemical compositions such that similar hydrates are formed during their reaction in presence of Portland cement. Compared to ternary systems based on blast-furnace slag or fly ash besides limestone, quaternary systems that contain both, blast-furnace slag and fly ash, simultaneously besides limestone, are expected to perform similar in terms of phase assemblage and strength development. 5. The use of SCM as cement replacing materials is limited due to their generally slower reaction compared to neat cement which also leads to lower strength development, especially in the early stage of the hydration up to 28 d. To account for this it is necessary to study the reactivity of SCM such as blast-furnace slag and fly ash in detail in order to develop strategies to enhance the reactivity and thereby the strength development of SCM-containing systems. 6. The early hydration of clinker phases is studied in detail, mainly in diluted systems. It is unclear if processes that were found to control the reaction of such model systems are also prevailing in concentrated cement pastes under realistic water-to-solid ratios. Deeper insight to this aspect is needed to better understand interactions of neat Portland cement and SCM in the first hours of hydration. State-of-the-art 7. Increasing Ca-concentrations lead to decreasing dissolution rates of C3S and C2S in diluted systems. 8. The hydration kinetics of C3S is controlled by the interplay of undersaturation with respect to C3S and oversaturation with respect to C-S-H. 9. Increasing Al-concentrations lead to a retardation of the hydration of C3S. It is unclear if the uptake of aluminum in C-S-H to form C-(A)-S-H which has a significantly lower growth rate than pure C-S-H or a retarding effect of Al on the dissolution of C3S causes this phenomenon. 10. The surface of limestone provides excellent conditions for the nucleation and growth of C-S-H such that significantly more C-S-H nuclei are formed in presence of limestone compared to other SCM. 11. The reactivity of blast-furnace slag and fly ash depends on the particle size as well as on the intrinsic reactivity of especially the amorphous phases. 12. An increase in network modifying oxides (e.g. CaO) in the chemical composition of amorphous (calcium)aluminosilicates leads to an increasingly depolymerized network which in turn causes increasing reactivity. The role of amphoteric oxides (Al2O3, Fe2O3) that can be present as network modifying oxides as well as network forming oxides is not completely solved. 13. CO2-containing AFm-phases are thermodynamically more stable than monosulfoaluminate. This indirectly stabilizes the voluminous ettringite which causes a higher total volume of hydrates and lower porosity whereby higher compressive strength is reached. 14. Only a few percent of limestone in blended cement reacts chemically dependent on the Al2O3 available for reaction. Al2O3 that is provided by the reaction of Portland cement but also by the dissolution of SCM, especially by fly ash, reacts to form hemicarboaluminate which is transformed to monocarboaluminate as the hydration proceeds. Methodology 15. The influence of SCM on the early hydration of Portland cement in binary (including blast-furnace slag or fly ash or limestone or quartz) and ternary (including fly ash and limestone) systems was investigated applying isothermal calorimetry and analysis of the pore solution chemistry. Calculated saturation indices and solubility products of relevant phases were correlated with heat development. Based on the gained data it was reviewed if mechanisms that control the hydration of pure phases in diluted systems are also prevailing in cement pastes under realistic conditions. 16. The influence of the chemical composition of synthetic glasses on their dissolution at high pH was investigated in highly diluted systems using ion chromatography. Pozzolanity tests were conducted on pastes using simplified model systems and glass-blended Portland cements. The process of the glass dissolution was investigated by isothermal calorimetry and by thermogravimetry. Correlation of experimentally determined total bound water with bound water determined by mass balance calculations as a function of amount of glass reacted allowed to estimate the degree of glass reaction in the pastes. Further on selective dissolution experiments were carried out to crosscheck the results of the bound water/mass balance approach. 17. The reaction kinetics of quaternary pastes containing blast-furnace slag and fly ash simultaneously in the presence of limestone were investigated up to 28 d using isothermal calorimetry and chemical shrinkage measurements. In addition strength tests on mortar bars were carried out. 18. Pastes of quaternary blends were also investigated in terms of hydrate assemblage at ages of up to 182 d. Thermodynamic calculations regarding total volume of hydrates as a function of limestone and fly ash/blast-furnace slag content were conducted. The calculations were supported by thermogravimetric determination of bound water and portlandite content as well as qualitative X-ray diffraction. The results were correlated with strength tests on mortar bars. 19. The pore solutions of hydrated quaternary blends were extracted and investigated by means of ion chromatography at ages of up to 728 d. Based on the ion concentrations in the solutions saturation indices were calculated for relevant phases. In order to gain better insight to the blast-furnace slag reaction sulphate speciation was carried out at two blast furnace slag levels (20 and 30 wt.%) for selected samples up to 91 d of hydration and at 91 d for the whole matrix under investigation. Main results 20. Investigations on the early hydration kinetics of binary systems showed a higher heat flow in presence of SCM compared to neat Portland cement. This is caused by the higher surface area that is available for the nucleation of hydrates and by the lower (over)saturation with respect to C-S-H. An increase in the Ca-concentration in the pore solution did not cause lower dissolution rates of C3S as was reported for pure phases in diluted systems. The highest dissolution was observed in the presence of limestone, i.e. at the highest Ca-concentration. The general trend of the reaction rate is inversely related to the degree of undersaturation with respect to C3S. The more undersaturated the faster the observed reaction. The presence of increasing Al-concentrations caused a retardation of the reaction which is in line with investigations on pure phases in diluted systems. Higher sulphate concentrations could be detected for the fly ash containing blend which possibly hindered ettringite precipitation and results in higher Al-concentrations. Correspondingly the low sulphate concentrations lead to lower Al-concentrations in the presence of quartz, blast-furnace slag and limestone compared to fly ash. 21. The early hydration kinetics of quaternary systems is significantly accelerated in the presence of limestone while fly ash leads to retardation. Compared to reference systems containing inert quartz, investigations by means of isothermal calorimetry and chemical shrinkage revealed an acceleration caused by blast-furnace slag. Additions of fly ash, limestone or mixtures thereof introduced another acceleration but differences are too small to be significant and clear distinguishing between the various SCM is not possible. 22. Investigations on the reactivity of synthetic glasses showed that increasing amounts of network modifying oxides caused an increase in reactivity and dissolution rates. The results reveal that Al2O3 acts mainly as network modifying oxide in all investigated glasses. Experimentally determined bound water (thermogravimetric experiments) in model systems and blended cements can be compared with bound water ...


Hydration of Multi-component Cements Containing Clinker, Slag, Type-V Fly Ash and Limestone Related Books

Hydration of Multi-component Cements Containing Clinker, Slag, Type-V Fly Ash and Limestone
Language: en
Pages:
Authors: Axel Schöler
Categories:
Type: BOOK - Published: 2016 - Publisher:

DOWNLOAD EBOOK

Problem definition and research objectives 1. The production of Portland cement clinker causes approx. 5% to 8% of the annual man-made CO2 emissions. This is du
Cyogonkaden.[Chronique du Chant des longs regrets].
Language: en
Pages:
Authors:
Categories:
Type: BOOK - Published: 1689 - Publisher:

DOWNLOAD EBOOK

A Practical Guide to Microstructural Analysis of Cementitious Materials
Language: en
Pages: 540
Authors: Karen Scrivener
Categories: Technology & Engineering
Type: BOOK - Published: 2018-10-09 - Publisher: CRC Press

DOWNLOAD EBOOK

A Practical Guide from Top-Level Industry Scientists As advanced teaching and training in the development of cementitious materials increase, the need has emerg
Study of hydration processes of Portland cements blended with supplementary cementitious materials
Language: en
Pages: 147
Authors: Axel Schöler
Categories: Technology & Engineering
Type: BOOK - Published: 2012-08-16 - Publisher: GRIN Verlag

DOWNLOAD EBOOK

Master's Thesis from the year 2012 in the subject Chemistry - Materials Chemistry, grade: 1,3, TU Bergakademie Freiberg (Institut für Glas, Keramik und Baustof
The Science and Technology of Cement and other Hydraulic Binders
Language: en
Pages: 922
Authors: Vipin Kant Singh
Categories: Technology & Engineering
Type: BOOK - Published: 2023-02-21 - Publisher: Elsevier

DOWNLOAD EBOOK

The Science and Technology of Cement and other Hydraulic Binders covers the design of Portland Cement composition using the ideas and formulae of earlier scient