Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem
Author | : Lawrence C. Evans |
Publisher | : American Mathematical Soc. |
Total Pages | : 81 |
Release | : 1999 |
ISBN-10 | : 9780821809389 |
ISBN-13 | : 0821809385 |
Rating | : 4/5 (385 Downloads) |
Download or read book Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 1999 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the authors demonstrate under some assumptions on $f $, $f $ that a solution to the classical Monge-Kantorovich problem of optimally rearranging the measure $\mu{ }=f dx$ onto $\mu =f dy$ can be constructed by studying the $p$-Laplacian equation $- \roman{div}(\vert DU_p\vert p-2}Du_p)=f -f $ in the limit as $p\rightarrow\infty$. The idea is to show $u_p\rightarrow u$, where $u$ satisfies $\vert Du\vert\leq 1, -\roman{div}(aDu)=f -f $ for some density $a\geq0$, and then to build a flow by solving a nonautonomous ODE involving $a, Du, f $ and $f $